
710 Lakeway Drive, Suite 100
Sunnyvale, CA 94085

T (650) 260-8638
E support@daric.com

http://www.daric.com/

Daric Integration Specification

Authors:
Wes Henderson

Configuration Guide

Version 5 .0 a

2

Introduction

This document is designed to be a reference for any person wishing to
implement or any person interested in integration of the Daric client application,
Daric server application, dialog database, or the Daric database into an existing
infrastructure. This document describes each application’s architecture and sub-
architecture their associated interfaces, database schemas, and the motivations
behind the chosen design. Both high-level and low-level designs are included in
this document.

This document should be read by an individual with a technical background and
has experience reading data flow diagrams (DFDs), control flow diagrams
(CFDs), interface designs, and development experience in object oriented
programming and event driven programming.

This design document has an accompanying specification document and test
document. This design document is per Daric System Specification version 3.0.
Any previous or later revisions of the specifications require a different revision of
this design document.

This document includes but is not limited to the following information for the
Daric System; system overview, design considerations, architectural strategies,
system architecture, policies and tactics, and detailed system design.

3

System Overview

The Daric application is a set of modules that encapsulate functionality for a
lender application, automation, and originations platform. The application can be
configured in multiple ways to suit specific clients’ loan products. Daric uses the
Django Web Framework (1.5) and the Python programming language (2.7),
separating the functionality out into seven modules: Lender Management,
Portfolio Builder, Income and Employment, Personal Credit Profiles and
Applications, Accounts, Analytics, and Administrative Back-Office. Each module
is written as a set of Views and helper applications corresponding to a particular
set of url endpoints for that module. The front-end is templated using the Django
Template Syntax, allowing for configurable web (client) applications. The server
application is split between a master Web application server and a Daric
Database that may be configured within the customer’s MySQL installation.

The system operates under a fully permissive license, and Gazzang’s zNcrypt
(PCI-DSS compliant) software is used for database encryption. The log4j
framework is used for intelligent system and audit logging.

Design Considerations

This section describes many of the issues that needed to be addressed or
resolved before attempting to devise a complete design solution.

Assumptions and Dependencies

This design of the Daric system makes several assumptions about software and
hardware, and has several software dependencies. All environmental
requirements of both the database and web applications can be found in the
Daric System Requirements 5.1.

Both the web server and database applications make the following assumptions
about their environmental environments;

!! The system can be described by the environmental requirements
associated to this document.

4

!! The system the application is executing on will have the required
resources available as necessary. This entails sufficient memory and
permanent storage space, an adequate CPU for the necessary
application, and a TCP/IP network connection.

The web application makes the following assumptions about its operation
environment;

!! The client browser will have JavaScript enabled for full feature
interactivity.

!! The client browser will support HTML 5 for full feature interactivity
!! The client is a browser on a mobile or tablet device, or computer.

The server application makes the following assumptions about its operation
environment;

!! The server machine will have the necessary software installed, and will
be open to the Internet on ports 22, 80, and to port 3306 for
appropriate private IP addresses within the VPC. These components
are required for our implementation of access to the Daric database.

!! The database machine will have the necessary databases setup and
accessible through port 3306 from the web application.

Goals and Guidelines

The major goal of the Daric web application is that it be extremely simple and
intuitive to use. The application is geared towards the prospective borrower and
lender, not a technically inclined individual. It is very important that the prompts
for the user be clear and concise since this will be the highest level of interaction
between the application and the user. It is also important that series of prompts
and responses be tested with users before being deployed as part of the
product so that all interaction is “approved” by a potential user.

The second major goal of the application is that the borrower-user gets a
response in a timely fashion. Intuition tells that a user will lose interest if they
have to wait long times for software to respond. This is why the design has
minimal data transferred between client and server or between database and
application. In this design, a minimum set of information is transferred to the
server in order to retrieve the necessary information, and the server only returns
the requested data that is then formatted into a readable phrase on the client
side.

5

A third major goal is that the web application be fully mobile compliant and that
a mobile application for use on major mobile platforms be made available.

This design attempted to keep the web application as data independent as
possible. All prompts and responses are completely data driven, so any prompt
or response can be changed by a simple database change without changing any
code. This makes the web application capable of prompting and responding to
various structural types of data.

The Daric server is intended to have a simple interface that is relatively easy to
administer. A minimal yet complete set of options is provided for the server
administrator to have control of resources consumed by the server application.
These options include, but are not limited to; controlling the limit of clients able
to connect to the server for maximum efficiency, ability to configure which port
the server listens on, ability to change the Daric database location, and control
how often the database is updated.

Architectural Strategies

The Daric system design has been divided into three major sub-systems; web
application, back-office application, and Daric database. The web application is
then separated into six major sub-sections corresponding to the modules (see
System Overview).

The web application’s major design considerations include easy Daric data
retrieval, easy database updates, mobile and browser client support, and a
minimal set of administrative features. The server application has been designed
to be as flexible as possible, trying not to design the server for specifically
Daric’s loan products, but for more complicated products with different servicing
strategis. Given the project’s constraints of human resources, software
resources, and time, the server is not completely “data independent”. Portions
of the server application are specific to this Daric system. These portions are
discussed in the server application’s detailed design strategies.

6

Error
Messages

Error
Messages

Given the system’s requirement that the client must be supported on Internet
Explorer, Mozilla, Safari, Chrome, as well as mobile browsers supported on the
Android and iOS platforms, this design attempts to balance performance
considerations across all potential use cases.

System Architecture

Submodule Architecture

1 – Administrative Back Office

Loan Officer

Back-
Office

Loan Servicing Changes

Access Level
Loan Pricing and Offer Changes

Figure 1 – Administrative Back Office

Continued breakdown

Retrieve
available

Make
changes

Figure 2 – Administrative Back Office Level 0

Access
credentials

obtained from
database.

User login

Review
changes

Error
Messages

Formatted
data

7

User Login:

We authenticate the user against the list of access credentials provided for back-
officers and loan administrators. Once that is done, the appropriate data from
the loan and account database is viewable and manipulable through Grappelli
(Interface).

Retrieve Viewable Portfolio

All data elements and editable data are provided for appropriate pricing on
loans, associated servicing files, Accounts with transaction level data, and
Lender Portfolios for changes to the files.

Format outputs:
Puts parsed data in the format discussed in the interface section. Then check if
we get the correct data. The reason that we wait until this part to check the data
instead of doing that right after we get the data is efficiency. We don’t want
spending too much time checking data. If the data is correct, then write it to file.
Otherwise, log errors.

File maintenance

Create the directories data and logerr under the directory contains the
programs to store results and log errors, respectively.

There is a set of back-office CRON routines that are run nightly for
housekeeping (automated servicing routines, email notifications, and payment
requests, as well as updates to servicing files to reflect lastest data). Additionally
the routines handle the automated compliance processes, including the
dispersal of notices of action taken.

2 - Accounts

The Accounts class has two distinct Django models:
1) Accounts store bank account and payment profile information for ACH

transactions.
2) Transaction objects store information about loan investments,

disbursal, repayment, and servicing of a specific account.

API endpoints are provided in the Detailed System Design.

3 - Analytics

8

The Analytics module can be broken up into three distinct sub-components; The
charts, Metrics, and the reporting framework which are all written in Python and
accessible through a GUI. API endpoints are provided in the Detailed System
Design

Each module contains a logger which will log information about the server
application, client, or Daric database. This log is written out to file in the event
that the server unexpectedly terminates. Optionally the log can be displayed in
any Object. The logger has two states it operates under; debug or not debug.
In debug mode, the logger will log any request to log information that is called
upon it. In non-debug mode, the logger discriminates between mandatory logs,
and debug logs and records only the mandatory information.

The server properties sub-component is used to store the properties and state
of the server that must be maintained when the server is terminated. Such
properties include; server port, maximum number of clients, debug mode, data
server, and Daric data fetch time. All server properties are retrieved and stored
in a properties file called “options.txt”. When an property is changed, it is
written out to the properties file. In the event that a property description is not
found in this file, a default is assigned to a given property.

4 – Lender and Portfolio Builder

This module provides all logic routines and configurable servicing files and
reports for booked loans associated with a given portfolio or lender. Data for the
back office is generated here, with transaction level information on loan
payments, support for reporting on portfolio performance, and calculation of
metrics for portfolio building. Additionally, the Servicing sub-module which runs
as an automated CRON routine (nightly at 2 am or whenever necessary) uses
Loan model data from this module for updates.

Models: Loan, Note (pre-booking), Lender (portfolio summaries)

9

Interface to Borrower and Mortgage Borrower Modules

Underwriting/Data
Engine

Bank
ONO

Intuit Other

5 – Borrower Profiles Automated Verif ication

Internal Structure

Authorization Client Authorization Client Authorization Client

The Mortgage Borrower and Borrower modules contain the logic and data
models necessary to access, edit, create, and remove Credit and Income Profiles
as well as to accept and track applications and Loans. API Endpoints are
discussed below.

The Underwriting and Decisioning Engine is responsible for managing the user’s
authorization connections to authorize third party access to online banking, Intuit,
ADP, TurboTax, and other financial data providers. When an authorization client
requests a connection, the appropriate credentials for either a new account or an
account refresh must be collected with the request and passed to the data
service for authentication. Each client connected to the server is associated with
one data account. The Underwriting and Decisioning Engine also accepts direct
written authorization for credit pulls and interfaces with Experian, D&B and others
for such services.

Models: CreditProfile, MortgageCreditProfile, Income Profile, Application

Policies and Tactics

This design was attempted to be made as modular as possible. This provides
flexibility between component developments. In design, we attempted to

10

partition the development into sections that each individual could create
independent of another, and have a clearly defined interface between
components. This would make compilation of the administrative and web
applications trivial. For example, the communications components between
modules work together, and are nearly independent of the data that they are
transferring. With a clearly defined interface for the communications
components, integration of these components is made simple and painless.

This design also took the policy of using coding standards such as standard
Python variable prefixes and caption. Generally method/property purposes are
easily deciphered by their descriptive name.

Detailed API Design

Daric has implemented a RESTful API that allows for querying and f iltering of loans, back-
office requests and creation of accounts and borrower profiles,
among other items.

Authenticating to the API is a very simple process. Simply use basic HTTP
Authentication with your Daric username and password.
Example
curl https:// api. daric. com/ lender/ noteset/ - u username: password

1 – Administrative Back Office

Classification

Modular administrative back office for loan products.

Purpose

This class implements the interface with the credentialing and data servers necessary to
support a user-friendly back office interface. This class is used as part of the server
application.

2 - Accounts

Classification

Modular accounts management on web server.

Purpose

11

This subsystem is designed to provide an interface to update and enter private account
information and transactions associated with a particular account.

Endpoint

/account/getAccountInformation
Purpose

Method to provide a client the requested information from the server in a readable
fashion.

3 – Borrower and Mortgage Borrowers

Classification

Module responsible for applications, credit and income profiles .

Purpose

This class implements any borrower interactions necessary for the underwriting process

Endpoint
/borrower/createLoanApplication(boolean bDebug, Dictionary(can be a request.POST))

Purpose – Constructor for the LoanApplication object.
return value – None

Endpoint

/borrower/getCreditProfile(boolean bDebug, borrower_id)

Purpose – Return credit and income profile for a borrower
return value – Dictionary of attributes

Endpoint

/borrower/getMortgageCreditProfile(boolean bDebug, Mortgage_borrower_id)

Purpose – Return credit and financial profile for a Mortgage Borrower
return value – Dictionary of attributes

4 – Lender

Classification

Modular servicing and lender interaction

Purpose

This class implements the lender and servicing modules.

Endpoint

12

contractSet(lender_id), RETURNS

ListingIdentifier Unique key to identify the listing / loan that we bid on.
LoanIdentifier /
ContractIdentifier

Unique key to identify our part of the loan we bid on whether or not
it's a pending or successfully syndicated loan. We could potentially
have multiple of these per ListingIdentifier where multiple bids are
allowed on a partial loan.

ListingDateTimeUTC
AccountIdentifier Our account number at the Platform
BidDateTimeUTC If we're able to make multiple bids on a partial loan, this will have a

different time associated to each bid (as well as a different
LoanIdentifier / ContractIdentifier)

LoanStartDate
MaturityDate
Currency
LoanTerm In months
Grading A, A+, C- etc.
InterestRate This is the annualized interest rate that we're receiving
InitialLoanAmount
TotalPrincipalRepaid
TotalInterestPaid
TotalPlatformFeesPaid The platform fee associated to the contract
TotalPenaltyFeesPaid Any fees assessed by the platform for late payments or overpayment

that's passed through to the lender
Status Status of the loan (Pending, Cancelled, Current, Late, Defaulted,

Matured)
ExpectedPayments The total number of expected payments over the life of the loan
TotalPaymentsMade Total payments made of the life of the loan
LatePaymentsMade Total of payments made that were past due over the life of the loan
TotalPaymentsPastDue How many payments behind is this loan/contract
DaysPastDue How many calendar days past due are the payments
ExpectedAnnualLoss Expected default rate for this credit grade on your platform (can

change over time)
PlatformBorrowPower Maximum amount you would've lent to the borrower on the platform

(had they requested)
PaymentFrequency The payment frequency for the loan
BorrowerIdentifier The unique id associated to the borrower
Total AmountLent The total amount lent to the borrower across all lenders (relevant for

partial loans)

13

cashtransset(lender_id) RETURNS

LoanIdentifier / ContractIdentifier Unique key to identify our part of the loan we bid on
whether or not it's a pending or successfully syndicated
loan. We could potentially have multiple of these per
ListingIdentifier where multiple bids are allowed on a
partial loan.

TransactionIdentifier The platform's reference to the transaction
TransactionDate
TransactionCurrency
TransactionDescription User friendly description of the transaction
Principal Portion of payment towards principal
Interest Portion of payment towards interest
PlatformFee Fees charged by the platform
PenaltyFee Fees passed through by the platform for late payment or

overpayment (if any)
SettlementDate The date you should expect the cash movement to hit

your account (relevant for transfers to accounts off-
platform). Otherwise, likely same as TransactionDate

lenderSet (lender_id) RETURNS

AccountIdentifier Our account number at the Platform. As we may have
several accounts

Currency
BalanceAmount Total cash balance in your account
TotalAvailable Total cash available for bidding on new loans/contracts
TotalInvested Total invested (for all active loans/contracts)
TotalPending The cash you're expecting to move out of your account

shortly as you've committed it to a loan/contract
TotalAccruedInterest Total Accrued Interest due to you for active investments
TotalPenaltyFeesReceived Total payments passed through to you for late payment

or overpayments by the borrower (if any) (for all
loans/contracts)

TotalPlatformFeesPaid Total fees paid to the platform (for all loans/contracts)
TotalInterestReceived Total interest payments received on your investments

(for all loans/contracts)
TotalPrincipalRepaid Total principal repaid across all your investments (for all

loans/contracts)
TotalPrincipalInvested Total of all the loans you've made (for all

loans/contracts)
TotalPrincipalDefaulted Total principal lost due to defaulted loans
InterestLostFromDefaults Total of future interest payments lost due to defaulted

loans

14

/noteset/?filters (request.GET)
Use Case: Get all loans that satisfy a set of credit criteria.

Purpose: The set of filters is specified as a set of query parameters. For example,
https://www.daric.com/lender/noteset/?incomemin=10000 requests notes where the
associated borrower has an income of $10,000 or more.

The response includes note and borrower information, including the set of 150 premier
attributes as defined through Experian.

A sample response is provided below in JSON form, representing a single note:
{

"id": 32,
"borrower": {

"premierattributes": {
"id": 151,
"ALJ0316": 98,
"ALJ5030": 999999998,
"ALJ5320": 999999998,
…

"RTR2388": 1,
"RTR3422": 0,
"RTR6200": 0,
"RTR7110": 1,
"STU0300": 33

},
"overBorrowingLimit": true,
"creditScore": "703",
"grossIncome": 288000,
"employmentLength": 3,
"revolvingCreditUtil": 0.02,
"earliestCredit": "1994-01-10",
"openCreditLines": 11,
"totalCreditLines": 15,
"currentDelinquencies": 1,
"currentDelinquentAmount": 0,
"publicRecords": 0,
"pastTwoYearsDelinquencies": 1,
"homeownerStatus": " ",
"pastSixMonthsInquiries": 0

},
"grade": "B4",
"interestRate": 0.13,
"interestRatePercent": "13.00%",

15

"amount": 8000,
"term": 36,
"creditScore": "703",
"title": "Debt Loan",
"description": "",
"purpose": "debt consolidation",
"amountRemaining": "8000.00",
"percentFunded": "0%",
"expiryDate": "2014-01-06"

}
The filter set specified in the URL may set values for incomeMin, incomeMax,
creditScoreMin, creditScoreMax, and maximum threshold values for any
attribute in the Premier Attribute Set. Simply chain together parameters. The
full data is provided for customized score calculation purposes.
For example, https://www.daric.com/lender/noteset/?incomemin=10000&ALJ0316=1
yields notes that satisfy the income criterion as well as the requirement that the attribute
ALJ0316 be below 1.

